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Most of the results in this context are no more than ten years old and
many parts of the theory are still developing and have not yet found a final
form. Although it was impossible to include every result in this field, so, I
have tried to give a fairly complete survey of the available material.

0.1 Introduction

In this context, C is complex plane, Ĉ is extended complex plane, D = {z ∈
C : |z| < 1} is open unit disk and it’s boundary denotes by T = {z ∈ C :
|z| = 1}. Every connected open set named domain will denote here by D or
Ω. H(Ω) denotes the set of all analytic (Holomorphic) functions defined in
a domain Ω. The function{

f : D ⊂ C → C
f(x, y) = u(x, y) + iv(x, y)

is analytic on D when f is continuous and u and v satisfy Cauchy-Riemann
equations, those are ux = vy and uy = −vx. This is equivalent to f ∈ C1(D)
if the real functions u = Re f and v = Imf of the real variables x and y
have continuous first order partial derivatives in D.

Every analytic map is conformal if it’s derivative never vanishes. A con-
formal map preserves angle and direction when it maps intersection curves
in a domain to intersection curves in it’s range.

Theorem 0.1.1. (Riemann Mapping Theorem [62]) Let G be a simply-
connected, proper subset of the complex plane with z0 ∈ G. Then there exists
a unique univalent, onto analytic function ϕ : G → D such that ϕ(z0) = 0
and ϕ′(z0) > 0.

Let G ̸= C be a simply-connected domain, we may replace the function
F : G → C by the function f := Foϕ−1 : D → C, where ϕ : G → D is
Riemann map. Therefore, in the study of univalent analytic functions, we
can restrict our attention to functions defined on D.



Chapter 1

Univalent analytic functions

Let A be a class of functions of the form

f(z) = z +
∞∑
n=2

anz
n (1.1)

which are analytic in D. Let Â be the subclass of A consisting of functions
f normalized byf(0) = 0, f ′(0) = 1. Further, let S denotes the class of func-
tions f ∈ Â that are univalent1 in D. The class S is a compact family. This
class is preserved under conjugation, rotation, dilation, disc automorphism2

and range transformation [24]. An example of a function of class S is the
Koebe function

k0(z) =
z

(1− z)2
=

∞∑
n=1

nzn = z + 2z2 + 3z3 + · · · (1.2)

This function maps the disk D onto the entire plane minus the part of the

negative real axis from −1

4
to infinity (Fig.1.1). It’s extremal function for

class S also. The familiar Koebe one-quarter theorem [24] says:

1called schlicht, injective, one-to-one also.
2For a given locally univalent analytic function f ∈ A, the disk automorphism is the

function Λf : D → C given by

Λf (z) =
f( z+z0

1+zz0
)− f(z0)

(1− |z0|2)f ′(z0)

where z0 ∈ D. A family F is linearly invariant if for every f ∈ F we have Λf (z) ∈ F .

3



4 CHAPTER 1. UNIVALENT ANALYTIC FUNCTIONS

Figure 1.1: The image of D under Koebe map.

Theorem 1.0.1. The image of D under every univalent function f ∈ S
contains a disk of radius

1

4
.

In earlier of 20th century on univalent functions discution, Bieberbach
conjectured that for every function f ∈ S, coefficient may satisfy the con-
dition |an| ≤ n for all n ≥ 2. The coefficients bound obtained as following
[36]:

Name Year |an| < Cn
Littlewood 1923 |an| < en ≃ 2.7183n

Landau 1929 |an| <
(
1

2
+

1

π

)
en ≃ 2.2244n

Goluzin 1946 |an| <
3

4
en ≃ 2.0388n

Bazilevič 1947 |an| <
9

4

(
1

π

∫ π

0

sinx

x
dx+ 0.2649

)
n ≃ 1.9240n

Milin 1949 |an| <
1

2
en+ 1.80 ≃ 1.3592n+ 1.80

Bazilevič 1949 |an| <
1

2
en+ 1.51 ≃ 1.3592n+ 1.51

Milin 1964 |an| <
√
e1.6 − 1

1.6
n ≃ 1.2427n

FitzGerald 1971 |an| <
√

7

6
n ≃ 1.0802n

Horowitz 1975 |an| < 6

√
209

140
n ≃ 1.0691n

also some primary coefficients bound obtained as following
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|an| ≤ n Year Name
|a2| ≤ 2 1916 Bieberbach [11].
|a3| ≤ 3 1923 Lowner [46].
|a4| ≤ 4 1955 Garabedian and Schiffer [29].
|a5| ≤ 5 1972 Pederson and Schiffer [59].
|a6| ≤ 6 1968 Pederson [58] and independently Ozawa [57] proved it in 1972.

The best result known was due to D. Horowitz [36] who proved that
|an| < 1.0657n using a very deep method due to Carl FitzGerald [27]. Finally,
the conjecture of Bieberbach proved by Louis de Branges in 1985:

Theorem 1.0.2. (de Branges Theorem [19]) For every f ∈ S, coeffiecients
satisfy |an| ≤ n, for all n.

de Branges proved the Milin conjecture (1971) on logarithmic coefficients,
which implies the Robertson conjecture (1936) on odd univalent functions,
and it implies the Rogosinski conjecture (1943) on subordinate functions, and
finally the Bieberbach conjecture ([24], p.197). Milin’s conjecture asserts that
the logarithmic coefficients γn of a univalent function of the form (1.1) defined
by

log
(f(z)

z

)
= 2

∞∑
n=1

γnz
n (1.3)

satisfy the inequality

n∑
m=1

m∑
k=1

(
k|γk|2 −

1

k

)
≤ 0 , n = 1, 2, · · · (1.4)

Clearly, the logarithmic coefficients of the Koebe function are γn =
1

n
and

satisfy the Milin’s conjecture. The Robertson’s conjecture says that for each
odd univalent function like h(z) = z + c3z

3 + c5z
5 + · · · the inequality

1 + |c3|2 + · · ·+ |c2n−1|2 ≤ n

holds [7]. Rogosinski conjecture will state in lemma 1.1.1.

1.1 Subordination

We say that f is subordinate to g and write f ≺ g or f(z) ≺ g(z) for it
if there exists an analytic function ω on D such that ω(0) = 0, |ω(z)| < 1
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and f(z) = g(ω(z)) for z ∈ D. When g is univalent, f is subordinate to g
precisely if f(0) = g(0) and if f(D) ⊂ g(D).

Lemma 1.1.1. (Rogosinski Conjecture [24]) If g(z) =
∞∑
n=1

bnz
n is analytic

in D and g ≺ f for some f ∈ S, then |bn| ≤ n for n = 1, 2, · · · .
This has known as the generalized Bieberbach conjecture. If f, g ∈ S and

g ≺ f then f = g.

1.2 Starlikeness

An analytic function f(z) is said to be starlike if it’s range is starlike with
respect to the origin. In geometric view of the range of f(z), this means
that every point of the range can be connected to the origin by a radial line
that lies entirely in the region. In the other words, arg{f(eiθ)} will be a
nondecreasing function of θ, or that

∂

∂θ
arg{f(eiθ)} ≥ 0

Starlikeness is a hereditary property for conformal mappings, so if f is an-
alytic and univalent in D with f(0) = 0, and if f maps D onto a domain
that is starlike with respect to the origin, then the image of every subdisk
|z| < r < 1 is also starlike with respect to the origin. The class of all starlike

functions in S is shown by S∗. Furthermore f(z) ∈ S∗ iff Re
{
z
f ′(z)

f(z)

}
> 0,

iff z
f ′(z)

f(z)
≺ 1 + z

1− z
. Such function with Re

{
z
f ′(z)

f(z)

}
> 0 is univalent on D.

Clearly, the multiply of two starlike functions is starlike, because ifG(z) =
f(z)g(z) then logG(z) = log f(z) + log g(z), so with differentiation we have

z
G′(z)

G(z)
= z

f ′(z)

f(z)
+ z

g′(z)

g(z)
for z ∈ D, and it’s done.

The extremal function for class S∗ is k0(z) =
z

(1− z)2
.

Let f(z) = z +
∞∑
n=2

anz
n be starlike on D, then there is a uniquely deter-

mined probability measure µ defined on the Borel subsets of the unit circle
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T such that

F (z) = z
f ′(z)

f(z)
=

∫
1 + γz

1− γz
dµ(γ) , z ∈ D

then

F (z) = 1 + 2
∞∑
n=1

zn
∫
γndµ(γ)

Defining the sequence cn = 2

∫
γndµ(γ) it follows quickly that

F (z) = 1 +
∞∑
n=1

cnz
n

and

f(z) = z exp

(
∞∑
n=1

1

n
cnz

n

)
and that the sequences an and cn are linked by means of the following of the
form

(n+ 1)an =
n∑

k=1

akcn−k

for n = 1, 2, 3, · · · , where a1 = 1.

Lemma 1.2.1. (Bazilevič [10]) If f(z) is starlike and γ > 0 then(f(z)
z

)γ
≺ |f ′(0)|γ

(1− z)2γ

Robertson (1936) introduced a subclass of S,
Definition 1.2.1. (Robertson [68]) An analytic function f(z) is called star-
like of order α with 0 ≤ α < 1 satisfying the inequality

Re

{
z
f ′(z)

f(z)

}
> α

for z ∈ D and the set of all such functions is denoted by S∗(α).

In this definition α is restricted with 0 ≤ α < 1 because Re

{
z
f ′(z)

f(z)

}
>

α with α < 0 may fail to be univalent on D. Markes, Robertson and Scott
(1961) obtained starlike products that functions which are starlike of positive
order and his results follows:
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Lemma 1.2.2. [47] Let fn(z) for n = 1, 2, · · · , N , be starlike at least of
order 1 − dn ≥ 0, where dn ≥ 0, and let sN = 1 −

∑N
n=1 dn ≥ 0. Then the

product

FN(z) = z
N∏

n=1

fn(z)

z
(1.5)

is starlike at least of order sN . There exist functions of this type which are
not starlike of any order greater than sN .

Lemma 1.2.3. [47] Let f(z) ∈ S and F (z) = z
(f(z)

z

)α
with F ′(0) = 1,

then for α ≥ 1, F (z) is univalent and starlike in D if and only if f(z) is

starlike at least of order 1− 1

α
.

This lemma for 0 ≤ α < 1 leads to f(z) = z
(F (z)

z

) 1
α
.

Lemma 1.2.4. [47, 80] The function f ∈ A, is starlike at least of order α,
where 0 ≤ α < 1, if

∞∑
n=2

n− α

1− α
|an| ≤ 1 (1.6)

If an ≤ 0 for all n, then (1.6) is a necessary condition for f(z) to be starlike
at least of order α.

Example 1.2.1. [47] The function fn(z) = z − z3

4n2
is by Lemma 1.2.4

starlike at least of order an = 1 − dn = 1 − 2

4n2 − 1
. Since sN = 0 Lemma

1.2.2 shows that

2

π
sin

π

2
z = z

∞∏
n=1

(
1− z2

4n2

)
(1.7)

is univalent and starlike in D.

Example 1.2.2. [47] The function
1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−

z
n where Γ(z)

is the Euler gamma function, is univalent and starlike for |z| < r0, where
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r0 is the modulus of the largest negative zero = −0.50 · · · of Γ′(z), and the
result is sharp.

The radius of starlikeness is less than tanh
π

4
≈ 0.655 · · · . Another sub-

class of starlike class was introduced by Stankiewicz (1966) and Brannan
(1969):

Definition 1.2.2. [84, 12] An analytic function f(z) is called strongly star-
like of order β with (0 < β ≤ 1) satisfying the inequality∣∣∣ arg (z f ′(z)

f(z)

)∣∣∣ < β
π

2

for z ∈ D and the set of all such functions is denoted by S∗[β].

1.3 Convexity

An analytic function f(z) is said to be convex if it’s range is a convex set.

In geometric view of the range of f(D), this means that arg
{ ∂

∂θ
f(eiθ)

}
be

a nondecreasing function of θ, or that

∂

∂θ
arg
{ ∂

∂θ
f(eiθ)

}
≥ 0

Convexity is a hereditary property for conformal mappings. If f is analytic
and univalent in D and maps it onto a convex domain, then the image of
every subdisk |z| = r < 1 is also convex. So we may say for every r < 1

∂

∂θ
arg{ ∂

∂θ
f(reiθ)} ≥ 0

for 0 ≤ θ ≤ 2π. The radius of convexity for the class S is 2−
√
3 ≈ 0.267 · · · .

The class of all convex functions in S is shown by K. This class is linearly

invariant, furthermore f(z) ∈ K iff Re

{
1 + z

f ′′(z)

f ′(z)

}
> 0, iff 1 + z

f ′′(z)

f ′(z)
≺

1 + z

1− z
. It is clear that every convex function is starlike. The extremal function

for class K is ℓ(z) =
z

1− z
(Fig.1.2).
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Figure 1.2: The image of D under convex map f = z
1−z

.

Lemma 1.3.1. (Silverman [80]) Let f(z) be alalytic in D of the form (1.1).

If
∞∑
n=2

n2|an| ≤ 1, then f ∈ K.

A theorem by Alexander (1915) shows a relation between classes S∗ and
K:

Theorem 1.3.1. (Alexander’s Theorem) Let f be analytic in D, with
f(0) = 0 and f ′(0) = 1. Then f ∈ K iff zf ′(z) ∈ S∗.

so, if f ∈ S∗ then g(z) =

∫ z

0

f(z)

z
dz is convex. A subfamily of K, denoted

by K(α), consisting of convex functions of order α introduced by Robertson
[68]. Here, for a constant 0 ≤ α < 1 function f in Â is called convex of order
α if

Re

{
1 + z

f ′′(z)

f ′(z)

}
> α (1.8)

for z ∈ D. It is obvious that for 0 ≤ α < β < 1,

K(β) ⊂ K(α) ⊂ K ⊂ S∗ ⊂ S (1.9)

The extremal function for class K(α) is

kα(z) =

{
(1−z)2α−1−1

1−2α
; α ̸= 1

2
,

− log(1− z) ; α = 1
2
.

(1.10)
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which maps D univalently onto the half-plane Re {w} > α (Sugawa [86]).

It’s interested to know that 1 + z
k′′α(z)

k′α(z)
=

1 + (1− 2α)z

1− z
with kα(0) = 0,

k′α(0) = 1. Clearly k0(z) =
z

1− z
which maps D univalently onto the half-

plane Re {w} > −1
2
, and

k0(z)

z
=

1

1− z
maps D univalently onto the half-

plane Re {w} > 1
2
. By Alexander theorem (1.3.1) we see:

f(z) ∈ K(α) ⇐⇒ zf ′(z) ∈ S∗(α) (1.11)

Furthermore,

Lemma 1.3.2. (Sim and Kwon [81]) If f(z) ∈ K(α) then Re
√
f ′(z) >

1

2− α
.

and more,

Lemma 1.3.3. (Sim and Kwon [81]) If Re

{
1 + z

f ′′(z)

f ′(z)

}
< β with 1 <

β < 2 then Re
√
f ′(z) <

1

2− β
.

Is there any relation between classes S∗(α) and K(α)?. At the first we
know that a normalized convex function in the unit disk is known to be

starlike at least of order
1

2
[48] and then, a corollary by MacGregor says:

Lemma 1.3.4. [89] Let 0 ≤ α < 1 and f ∈ K(α), then f(z) ∈ S∗(δ(α)),
where

δ(α) =

{ 1−2α
22−2α−2

; α ̸= 1
2
,

1
2 log 2

; α = 1
2
.

(1.12)

Lemma 1.3.5. [80] The function f ∈ A, is convex of order α, where 0 ≤
α < 1, if

∞∑
n=2

n(n− α)

1− α
|an| ≤ 1 (1.13)
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Lemma 1.3.6. (Marx and Strohhacker 1933) For a normalized convex func-

tion f on the unit disk D,
f(z)

z
≺ 1

1− z
for z ∈ D.

Lemma 1.3.7. (Brickman, Hallenbeck, MacGregor and Wilken 1973) Let

1
2
≤ α < 1. Then, for f ∈ K(α), we have

f(z)

z
≺ kα(z)

z
for z ∈ D,

Furthermore
kα(−r)
−r

≤ Re
f(z)

z
≤ kα(r)

r
for |z| = r < 1.

Lemma 1.3.8. (Sugawa and Wang 2015 [86]) Let 0 < α < 1. Then, for

f ∈ K(α), we have
f(z)

z
≺ kα(z)

z
for z ∈ D.

Lemma 1.3.9. (Styer and Wright 1973) Let f, g ∈ K and |Imf(z)

z
| ≤ π

4

and |Img(z)

z
| ≤ π

4
on D then

f + g

2
∈ S∗.

Lemma 1.3.10. (Hallenbeck and Ruscheweyh 1975 [34]) for f, g ∈ K and

f ′′(0) = g′′(0) = 0 we have
f + g

2
∈ S∗.

They also proved that for f ∈ K with f ′′(0) = 0 which satisfies |Imf(z)

z
| ≤

π

4
we have

f(z)

z
≺ H1(z) :=

1

2
√
z
log

1 +
√
z

1−
√
z
=

∞∑
0

zn

2n+ 1
. (1.14)

Lemma 1.3.11. (Sugawa and Wang 2015 [86]) For f, g ∈ K(3
5
) we have

f + g

2
∈ S∗.

Lemma 1.3.12. [47] If f, g ∈ K then
fg

z
∈ S∗. This product is not starlike

of any order greater than zero when f(z) = g(z) =
z

1 + z
.

Definition 1.3.1. An analytic function f(z) is called strongly convex of order
β with (0 < β ≤ 1) satisfying the inequality∣∣∣ arg{1 + z

f ′′(z)

f ′(z)

} ∣∣∣ < β
π

2
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for z ∈ D and the set of all such functions is denoted by K∗[β].

f(z) ∈ K[β] ⇐⇒ zf ′(z) ∈ S∗[β] (1.15)

Nunokawa (1993) proved that for 0 < β < 1, if f(z) ∈ K
[
δ(β)

]
then f(z) ∈

S∗[β] where

δ(β) = β +
2

π
tan−1 βn(β) sin (1−β)π

2

m(β) + βn(β) cos (1−β)π
2

while m(β) = (1 + β)
1+β
2 and n(β) = (1− β)

β−1
2 .

Lemma 1.3.13. (Umezawa [88]) Let f ∈ A and f ′(z) ̸= 0 on |z| = 1. If

there holds the relation

∫ 2π

0

∣∣∣Re
{
1+ z

f ′′(z)

f ′(z)

}∣∣∣dθ < 4π for |z| = 1 then f(z)

is convex in one direction and hence f(z) is univalent in |z| ≤ 1.

Definition 1.3.2. A domain D is called convex in the direction of α (0 ≤
α < π) if it’s intersection with every line parallel to the line pass through 0
and eiα is either empty or an interval.

A univalent function f in D is said to be convex in the direction of α if
f(D) is convex in the direction of α. We say that f is convex in one direction
if there exists an α such that f is convex in the direction of α.

Lemma 1.3.14. (Pommerenke [61]) Let f be an analytic function in D,
f(0) = 0, and f ′(0) ̸= 0, and let

ϕ(z) =
z

(1 + zeiθ)(1 + ze−iθ)

where θ ∈ R. If

Re
{zf ′(z)

ϕ(z)

}
> 0 , z ∈ D

then f is convex in the direction of the real axis.
Lewandowski, Miller and Zotkiewicz, 1974 [?] have introduced the class

of γ-starlike functions, denoted here by G(1, γ), which satisfy

Re
{(
z
f ′(z)

f(z)

)1−γ(
1 + z

f ′′(z)

f ′(z)

)γ}
> 0 , z ∈ D
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Nunokawa and Sokol [56] extend this class to G(α, γ), called γ-strongly star-
like functions of order α consists of functions f ∈ A satisfying∣∣∣ arg{(z f ′(z)

f(z)

)1−γ(
1 + z

f ′′(z)

f ′(z)

)γ}∣∣∣ < α
π

2
, z ∈ D (1.16)

where 0 < α ≤ 1, γ > 0 and f(z) is verified with f(z)f ′(z)
(
1+ z

f ′′(z)

f ′(z)

)
̸= 0

in z ∈ D− {0}. Note that G(0, β) ⊂ S∗[β],

Theorem 1.3.2. Let 0 < α ≤ 1, γ > 0 and f ∈ A is of the form (1.1)
satisfies (1.16). If the equation, with respect to x,

x+
2γ

π
tan−1 xn(x) sin (1−x)π

2

m(x) + xn(x) cos (1−x)π
2

= α (1.17)

while m(x) = (1 + x)
1+x
2 and n(x) = (1 − x)

x−1
2 , has a solution β ∈ (0, 1],

then f ∈ G(α, γ).

Theorem 1.3.3. Let 0 < α ≤ 1, 0 < γ ≤ 1 and f ∈ A is of the form
(1.1) satisfies (1.16). If the equation (1.17) has a solution 0 < α0 ≤ 1, then

f ∈ K[ (1−γ)α0+α
γ

].

Corollary 1.3.4. Assume that the equation (1.17) has a solution 0 < α0 <
α ≤ 1. If 0 < δ < γ, then G(α, γ) ⊂ G(α, δ).

Theorem 1.3.5. Let 0 < α ≤ 1, γ < 0 and f ∈ A is of the form (1.1)

satisfies (1.16). If β =
α− γ

1− γ
then f ∈ S∗[β].

Sim and Kwon [81] introduce this class (2013):

Definition 1.3.3. For real numbers α and β with 0 ≤ α < 1 < β, a function
f(z) ∈ A belonge to the class K(α, β) if f(z) satisfies this inequality

α < Re
(
1 + z

f ′′(z)

f ′(z)

)
< β , z ∈ D (1.18)

Clearly K(α, β) ⊂ K and (1.22) gives these conditions equivalently:

1 + z
f ′′(z)

f ′(z)
≺ 1 + (1− 2α)z

1− z
, z ∈ D , 0 ≤ α < 1 (1.19)

1 + z
f ′′(z)

f ′(z)
≺ 1 + (1− 2β)z

1− z
, z ∈ D , β > 1 (1.20)
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They used the function

p(z) = 1 + i
β − α

π
log
(1− e2πi

1−α
β−α z

1− z

)
, z ∈ D (1.21)

which maps D on convex strip α < Rew < β was introduced by Kuroki and
Owa [43], so

Lemma 1.3.15. For real numbers α and β with 0 ≤ α < 1 < β, a function
f(z) ∈ A belonge to the class K(α, β) iff

1 + z
f ′′(z)

f ′(z)
≺ 1 + i

β − α

π
log
(1− e2πi

1−α
β−α z

1− z

)
, z ∈ D (1.22)

and obtained coefficient estimates bounds for f ∈ K(α, β) as following

|an| ≤


1

2
|B1| ; n = 2,

|B1|
n(n− 1)

n−2∏
k=1

(
1 +

|B1|
k

)
; n = 3, 4, · · · .

(1.23)

where

|B1| =
2(β − α)

π
sin

(1− α)π

β − α
.

Lemma 1.3.16. For real numbers α and β with 0 ≤ α < 1 < β < 2, if
f ∈ K(α, β) then

1

2− α
< Re

√
f ′(z) <

1

2− β

1.4 Close-to-Convex

A domain D is said to be close-to-convex, if the complement of D can be
written as a union of non-crossing half lines. An univalent function f in D
is said to be close-to-convex if its range f(D) is a close-to-convex domain.

Definition 1.4.1. A function of the form (1.1) is called close-to-convex if
there is a starlike function g and a function h ∈ P such that

zf ′(z) = g(z)h(z) , z ∈ D
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The close-to-convex subclass of S, include all close-to-convex univalent func-
tion, denote by C. This class was introduced by Kaplan (1952) and shown
by him to consist of univalent functions. It is clear that S∗ ⊂ C ⊂ S.

The equivalent definition is that a function f(z) is called close-to-convex
if there is a starlike function g such that

Re
{zf ′(z)

g(z)

}
> 0 , z ∈ D (1.24)

This is similar to say there is a (not necessarily normalized) convex univalent
function h such that

Re
{f ′(z)

h′(z)

}
> 0 , z ∈ D (1.25)

Using Noshiro-Warschawski theorem ([24], p.47), every function f(z) ∈ A
with Re f ′(z) > 0 is univalent and close-to-convex. With suitable choose of
g in (1.24), one obtains a subclass of close-to-convex functions

Re

{
n∏

j=1

(z − eiαj)σjf ′(z)

}
> 0 (1.26)

where 0 ≤ α1 ≤ α2 · · · ≤ αn ≤ 2π, 0 ≤ σj ≤ 1 and
n∑

j=1

σj ≤ 2.

Lemma 1.4.1. (Kaplan [24]) Let f be analytic and locally univalent in D
and satisfy the following condition

Re
{
1 + z

f ′′(z)

f ′(z)

}
> −1

2

for all z ∈ D, then f is univalent and close-to-convex in D.

Definition 1.4.2. A function f(z) ∈ A is called close-to-convex of order α
(0 ≤ α < 1) if satisfying the condition

Re
{f ′(z)

h′(z)

}
> α , z ∈ D

for some (not necessarily normalized) convex univalent function h on D.
The class of all such functions is denoted by C(α).
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1.5 P class

This set is the family of all functions p analytic in D for which Re p(z) > 0,
p(z) = 1 + c1z + c2z

2 + · · · for z ∈ D. A Herglotz representation formula
shows that

Lemma 1.5.1. p(z) ∈ P iff p(z) =

∫ 2π

0

1 + e−itz

1− e−itz
dγ(t) such that γ is in-

creasing and γ(2π)− γ(0) = 1.

Lemma 1.5.2. (Caratheodory Lemma [62]) If p(z) ∈ P, then |cn| ≤ 2 for
each n.

It’s trivial that

f(z) ∈ S∗ ⇔ z
f ′(z)

f(z)
∈ P

p0 =
1 + z

1− z
is the extremal function for this class. that is starlike and convex.

1.6 Bazilevič

This class is a generalization for close-to-convex class. Let g(z) is starlike in
D, p is analytic function with Re p(z) > 0 in D and a > 0, then the function

f(z) =
(∫ z

0

p(z)g(z)αζ iβ−1dζ
) 1

α+iβ
α > 0, β ∈ R (1.27)

has been shown by Bazilevič [10] to be a analytic and univalent function
in D. This class of functions denote by B(α + iβ). Note that B(1) is the
class of normalized close-to-convex functions. In [25] has been showed that
if f(z) ∈ B(α + iβ) with p(z) = 1 then f(z) must satisfy

Re {(α− 1 + iβ)z
f ′(z)

f(z)
+ (1 + z

f ′′(z)

f ′(z)
)} > 0 (1.28)

for z ∈ D. Conversely if f(z) is analytic D with f(0) = 0, f(z)f ′(z)
z

̸= 0 for
z ∈ D and satisfy in (1.28) then f(z) can be written in the form (1.27), with
p(z) = 1.
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1.7 Spirallike Class

A generalization of starlikeness leads us to a useful property known as spi-
rallikeness introduced by Spacek in 1933. A logarithmic spiral is a curve in
the complex plane of the form w = w0e

−λt for t ∈ R, where w0 ̸= 0 and λ are
complex constants with Reλ ̸= 0. With no loss of generality in assuming
λ = eiα with α ∈ [−π

2
, π
2
], then the curve is called an α-spiral.

A domain D containing the origin is said to be α-spirallike if for each
point w0 ̸= 0 in D, the arc of the α-spiral from w0 to the origin lies entirely
in D. An α-spirallike domain is simply connected.

A function f ∈ A is said to be α-spirallike if it’s range is α-spirallike. A
function is spirallike if it is α-spirallike for some α. The 0-spirallike functions
are starlike functions. Spirallikeness can be characterized by an analytic
condition which is a slight generalization of the condition for starlikeness:

Theorem 1.7.1. [24] Let f ∈ A with f ′(z) ̸= 0 for z ∈ D − {0} and

α ∈ [−π
2
,
π

2
]. Then f is α-spirallike if and only if

Re
{
e−iαz

f ′(z)

f(z)

}
> 0 (1.29)

The class of all α-spirallike functions in S is shown by Ssp(α). The
Theorem asserts (1.29) is a sufficient condition for univalence. Geometric
considerations show that for α ̸= 0, an α-spirallike function need not be
close-to-convex. An example is the function

f(z) =
z

(1− z)2eiα cosα
∈ Ssp(α) (1.30)

which maps D onto the complement of an arc of an α-spiral. This func-
tion plays the role of the Koebe function in extremal problems for α-spirallike
functions. On the other hand, a close-to-convex function need not be spiral-
like. An example is the function

f(z) =
z − z2 cosϕ

(1− eiϕz)2
, cosϕ ̸= 0 (1.31)

which maps D onto the complement of a nonradial half-line. Kulshrestha
[41] introduced a subclass Ssp(α, γ) ⊂ Ssp(α) of γ-spiral functions of order α
as follows:
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Definition 1.7.1. [41] Let f ∈ A with f ′(z) ̸= 0 for z ∈ D−{0}. Then f ∈
Ssp(α, γ) if and only if there exist real numbers α ∈ [−π

2
,
π

2
] and 0 ≤ γ < 1,

such that

Re
{
eiαz

f ′(z)

f(z)

}
> γ cosα , z ∈ D (1.32)

1.8 T Class

Let T denote the subclass of S consisting of functions whose nonzero coeffi-
cients, from the second on, are negative. That is, an analytic and univalent
function f is in T if it can be expressed as

f(z) = z −
∞∑
n=2

|an|zn

Lemma 1.8.1. [80] The function f = z −
∑∞

n=2 |an|zn is in T ∗(α), if
∞∑
n=2

n|an| ≤ 1.

We also denote by T ∗(α) and T K(α) the subclasses of T that are, re-
spectively, starlike of order α and convex of order α. T = T ∗(0)

Lemma 1.8.2. [80] The function f = z −
∑∞

n=2 |an|zn ∈ A, is in T ∗(α),
where 0 ≤ α < 1, if

∞∑
n=2

n− α

1− α
|an| ≤ 1 (1.33)

Lemma 1.8.3. [80] If the function f = z −
∑∞

n=2 |an|zn ∈ T ∗(α), with

0 ≤ α < 1, then |an| ≤
1− α

n− α
with equality only for functions of the form

f(z) = z − 1− α

n− α
zn.

Lemma 1.8.4. [80] The function f = z −
∑∞

n=2 |an|zn is in T K∗(α), where
0 ≤ α < 1, iff

∞∑
n=2

n(n− α)

1− α
|an| ≤ 1 (1.34)
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Lemma 1.8.5. [80] If the function f ∈ T ∗(α), with 0 ≤ α < 1, then

r − 1− α

2− α
r2 ≤ |f(z)| ≤ r +

1− α

2− α
r2 (1.35)

1− 2(1− α)

2− α
r ≤ |f ′(z)| ≤ 1 +

2(1− α)

2− α
r (1.36)

with equality for function f(z) = z − 1− α

2− α
z2 when z = ±r.

Lemma 1.8.6. [80] If the function f ∈ T K∗(α), with 0 ≤ α < 1, then

r − 1− α

2(2− α)
r2 ≤ |f(z)| ≤ r +

1− α

2(2− α)
r2 (1.37)

1− 1− α

2− α
r ≤ |f ′(z)| ≤ 1 +

1− α

2− α
r (1.38)

with equality for function f(z) = z − 1− α

2(2− α)
z2 when z = ±r.

Lemma 1.8.7. [80] If the function f ∈ T K∗(α), then f ∈ T ∗( 2
3−α

),The

result is sharp with f(z) = z − 1− α

2(2− α)
z2 being extremal.

Lemma 1.8.8. [80] If the function f ∈ T ∗(α), then convexity radius of

f(z) is rcon(α) = inf
n≥2

( n− α

n2(1− α)

) 1
n−1

. The result is sharp with fn(z) =

z − 1− α

n− α
zn being extremal for some n.

Lemma 1.8.9. [80] Let f(z) = z +
∞∑
n=2

anz
n ∈ T , then

∞∑
n=2

n|an| ≤ 1.

1.9 Starlike with respect to symmetric points

Let f(z) be analytic in D and suppose that for every r less than and suffi-
ciently close to one and every ζ on |z| = r, the angular velocity of f(z) about
the point f(−ζ) is positive at z = ζ as z traverses the circle |z| = r in the
positive direction, that is to say

Re
zf ′(z)

f(z)− f(−ζ)
> 0 , z = ζ, |ζ| = r (1.39)
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Then f(z) is said to be starlike with respect to symmetrical points. Obviously
the class of functions univalent and starlike with respect to symmetrical
points includes the classes of convex functions and odd functions starlike
with respect to the origin.

This is equivalent with following expression:

Definition 1.9.1. [76] A function f ∈ A is starlike with respect to symmetric
points if

Re
2zf ′(z)

f(z)− f(−z)
> 0 , z ∈ D (1.40)

These functions are also univalent and the class of all such functions is de-
noted by S∗

s .

Lemma 1.9.1. [76] Let f ∈ A be univalent and starlike with respect to
symmetrical points in D. Then |an| ≤ 1 for n ≥ 2, equality being attained by

the function
z

1 + εz
, |ε| = 1.

also a generalized condition is as follows:

Lemma 1.9.2. [76] Let f ∈ A, and suppose that for a positive integer k
there holds the inequality

Re
zf ′(z)∑k−1
j=0

f(εjz)
εj

> 0 , z ∈ D (1.41)

where ε = e2πi/k. Then f(z) is univalent and close-to-convex in D.

Definition 1.9.2. A function f(z) ∈ A is starlike with respect to symmetric
points of order α if

Re
2zf ′(z)

f(z)− f(−z)
> α , z ∈ D

where 0 ≤ α < 1. These functions are also univalent and the class of all such
functions is denoted by S∗

s (α).

1.10 UST class

As we said, starlikeness is a hereditary property for conformal mappings, but
it is not always true that f ∈ S∗ maps each disk |z − z0| < ρ < 1− |z0| onto
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a domain starlike with respect to f(z0). This matter proved by Brown in
1989 [15], He showed that for each f ∈ S and for all sufficiently small disks
in D, the image of this small disk is starlike. The set of such functions with
this property that maps each disk {|z− z0| < ρ} ⊂ D onto a domain starlike
with respect to f(z0) introduced by Goodman [32] and studied in analytic
and geometric view.

Definition 1.10.1. A function f(z) ∈ S∗ is said to be uniformly starlike in
D if it has the property that for every circular arc γ contained in D, with
center ζ ∈ D, the arc f(γ) be starlike with respect to f(ζ). We denote the
family of all uniformly starlike functions by UST and we have [32],

UST =
{
f(z) ∈ S : Re

(z − ζ)f ′(z)

f(z)− f(ζ)
> 0 , (z, ζ) ∈ D2

}
(1.42)

We may define
(z − ζ)f ′(z)

f(z)− f(ζ)
= 1 and it’s clear that UST ⊂ S∗. This class is

preserved under rotations, e−iαf(eiαz) for α ∈ R and transformations
1

t
f(tz),

0 < t ≤ 1 are preserve this class also. UST class isn’t linearly invariant, in

fact the disk automorphism of the function f(z) =
z

1− 1
2
z
is not belong to

this class.
For ζ = −z in (1.42), evidently UST ⊂ S∗

s and hence for f ∈ UST ,

|an| ≤ 1 but there is a better bound |an| ≤
2

n
proved by Charles Horowitz,

mentioned in [32]. Determination of the sharp coefficient estimates for UST
class is an open problem. The most of properties of the class UST are
difficult to establish. Goodman showed that

f(z) =
z

1− Az
∈ UST iff |A| ≤

√
2

2
(1.43)

He also proved for |B| ≤ n√
2
, the function f(z) = z + Bzn belongs to

UST where n > 1. Merkes and Salmassi [49] improved this bound to be

|B| ≤
√
n+ 1

2n3
for n > 1, besides this bound need not be sharp. The sharp

upper bound was obtained by Nezhmetdinov in 1997 ([55], Corollary 4, p.

47) and shows for n = 2, |B| ≤ 1

2.31
and for n = 3, |B| ≤ 1

3.573
. Rønning

[?], Merkes and Salmassi [49] showed the following important results:
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Lemma 1.10.1. ([69], Lemma 3.3, p.236) f(z) ∈ UST iff for every z ∈ D,

|x| = 1, Re
f(z)− f(xz)

(1− x)zf ′(z)
≥ 0.

Lemma 1.10.2. [?] f(z) ∈ UST iff for every z ∈ D, |t| = 1, Re
(1− t)zf ′(z)

f(z)− f(tz)
>

0.

Lemma 1.10.3. ([49], Theorem 4, p.451) f ∈ UST if for all z, w ∈ D,

Re
f ′(w)

f ′(z)
> 0

and if f ∈ UST then for all z, w ∈ D,

Re
(f ′(w)

f ′(z)

) 1
2
> 0

The exponent 1
2
is the best possible.

Further investigations of UST class obtained by Taylor series exansion
of (1.42) about z and ζ seperately. Let p(z) = p0 + p1z + p2z

2 + · · · , q(z) =
q0 + q1z + q2z

2 + · · · and

(z − ζ)f ′(z)

f(z)− f(ζ)
=

∞∑
n=0

pn(ζ)z
n =

∞∑
n=0

qn(z)ζ
n , (z, ζ) ∈ D2 (1.44)

such that Re p(z) > 0 and Re q(z) > 0,

Lemma 1.10.4. ([32], Lemma 1, p.365) If f ∈ UST , then

p0(ζ) =
f(ζ)

ζ
, p1(ζ) =

f(ζ)[1− 2a2ζ]− ζ

ζ2
, q0(z) =

f(z)

zf ′(z)
, q1(z) =

f(z)− z

z2f ′(z)

and
|p1(ζ)| ≤ 2Re p0(ζ) , |q1(z)| ≤ 2Re q0(z)

This lemma and coefficients bound estimates |an| ≤
2

n
lead us to growth

inequality for f ∈ UST ,

r

1 + 2r
≤ |f(z)| ≤ −r + 2 ln

1

1− r
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for |z| = r < 1. Finally this shows the Koebe constant for the family UST ,
is

1

3
≤ K(UST ) ≤ 1−

√
3

4

To obtain a sufficient condition which concludes a function belongs to UST ,
we need convolution method. For determining the greatest value of δ such
that the condition

∞∑
n=2

n|an| ≤ δ

implies that f ∈ UST , Goodman showed that δ =

√
2

2
= 0.7071 . . . is an

acceptable value but the sharp value for δ must not exceed

√
3

2
= 0.8660 . . ..

Finally

Lemma 1.10.5. (Nezhmetdinov [55]) If f ∈ A satisfies the condition
∞∑
n=2

n|an| ≤

δ0 then f ∈ UST . The constant δ0 on the right-hand side is equal to

δ0 =
1√
M

= 0.7963 . . . that M is the best possible mentioned in lemma

1.14.3.

Lemma 1.10.6. ([49], Theorem 1, p.450) Let f ∈ A. f ∈ UST iff for all
α, β ∈ D,

Re
f(z) ∗ z

(1−αz)(1−βz)

f(z) ∗ z
(1−αz)2

≥ 0 , z ∈ D

Open Problem 1. Ronning [?] proved that UST ⊈ S∗(1
2
) and posed the

problem of determining the largest α such that UST ⊂ S∗(α). Nezhmetdinov
[?] showed that UST ⊈ S∗(α0) for some α0 ≈ 0.1483. Determine the largest
α such that UST ⊂ S∗(α).

the map ℓ(z) =
z

1− z
=

1

2
(p0 − 1) is not in UST .

1.11 UCV class

As we said, starlikeness is a hereditary property for conformal mappings, but
it is not always true that f ∈ S∗ maps each disk |z − z0| < ρ < 1− |z0| onto
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a domain starlike with respect to f(z0). This matter proved by Brown in
1989 [15], He showed that for each f ∈ S and for all sufficiently small disks
in D, the image of this small disk is starlike. The set of such functions with
this property that maps each disk {|z− z0| < ρ} ⊂ D onto a domain starlike
with respect to f(z0) introduced by Goodman [32] and studied in analytic
and geometric view.

Definition 1.11.1. A function f(z) ∈ S is said to be uniformly convex in D
if it has the property that for every circular arc γ contained in D, with center
ζ ∈ D, the arc f(γ) be convex. We denote the family of all uniformly convex
functions by UCV and we have [31],

UCV =
{
f(z) ∈ S : Re

(
1 + (z − ζ)

f ′′(z)

f ′(z)

)
≥ 0 , (z, ζ) ∈ D2

}
(1.45)

It’s clear that UCV ⊂ K. For ζ = −z in (1.45), evidently UCV ⊂ K(1
2
)

and hence for f ∈ UCV , |an| ≤
1

n
. The class UCV isn’t a linear-invariant

family, this was proved by Goodman ([31], Theorem 5, p.90) with function

f(z) =
z

1− Az
. He showed f(z) =

z

1− Az
∈ UCV iff |A| ≤ 1

3
.

Lemma 1.11.1. (Nezhmetdinov [55]) For n ≥ 2, f = z + anz
n ∈ UCV iff

|an| ≤
1

n(2n− 1)
.

Lemma 1.11.2. (Nezhmetdinov [55]) If f ∈ A satisfies the condition
∞∑
n=2

n(2n−

1)|an| ≤ 1 then f ∈ UCV. The constant 1 on the right-hand side is the best
possible.

There is a significant one-variable characterization of UCV found by Ron-
ning ([71], Theorem 1, p.190) and Ma and Minda [?, Theorem 2, p.162]
independently:

Lemma 1.11.3. f ∈ UCV iff

Re
(
1 + z

f ′′(z)

f ′(z)

)
>
∣∣∣z f ′′(z)

f ′(z)

∣∣∣ , z ∈ D (1.46)

Futhermore if
∣∣∣z f ′′(z)

f ′(z)

∣∣∣ < 1

2
then f ∈ UCV .
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1.12 SP class

Now, let w = 1 + z
f ′′(z)

f ′(z)
, according to (1.46) define

Ωp = {w ∈ C : Rew > |w − 1| } (1.47)

The set Ωp is the interior of the parabola (Imw)2 = 2Re w − 1 which it

is symmetric with respect to the real axis and has (
1

2
, 0) as its vertex. So,

f ∈ UCV iff 1 + z
f ′′(z)

f ′(z)
∈ Ωp. The class SP defined in the following way:

Definition 1.12.1. The class SP of parabolic starlike functions consists of
all functions f ∈ A satisfying condition

Re
(
z
f ′(z)

f(z)

)
>
∣∣∣z f ′(z)

f(z)
− 1
∣∣∣ , z ∈ D (1.48)

It’s clear that SP ⊂ S∗ and since the parabolic region Ωp is contained

in the halfplane {w : Rew >
1

2
} and the sector {w : | argw| < π

4
}, so

SP ⊂ S∗(1
2
) ∩ S∗

1
2

[71]. Also (1.46) and (1.48) show that

f ∈ UCV ⇐⇒ zf ′(z) ∈ SP (1.49)

by Alexander theorem (1.3.1). Is there such relation like (1.49) between SP
and UST classes? The answer is no. Goodman [31] and Ronning [69] show

SP ⊈ UST , UST ⊈ SP

Futhermore if
∣∣∣z f ′(z)

f(z)
− 1
∣∣∣ < 1

2
then f ∈ SP .

1.13 Ma-Minda Starlike

Ma and Minda [1992] gave a unified presentation of some subclasses of starlike
and convex functions by subordination. Let ϕ be an analytic function with
positive real part and normalized by the conditions ϕ)0) = 1, ϕ′(0) > 0 and ϕ
maps D onto a region starlike with respect to 1 and symmetric with respect
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to the real axis. They introduced these subclasses for starlike and convex
function class.

S∗(ϕ) = {f ∈ A : z
f ′(z)

f(z)
≺ ϕ(z), z ∈ D}

In literature, the functions belonging to these classes are called Ma-Minda
starlike and Ma-Minda convex, respectively.

1.14 Convolution over analytic functions

The convolution or Hadamard product of two functions f(z) and F (z) with
power series f(z) = z+

∑∞
n=2 anz

n and F (z) = z+
∑∞

n=2Anz
n is denoted by

f ∗ F and is defined as3

(f ∗ F )(z) = z +
∞∑
n=2

anAnz
n, (1.50)

The right half-plane mapping ℓ(z) =
z

1− z
acts as the convolution identity

and the map k(z) =
z

(1− z)2
acts as derivative operation over function, also.

3 The term convolution is used since

(f ∗ F )(z) =
1

2πi

∫
|ζ|=ρ

f
(z
ζ

)
F (z)

dζ

ζ

for |z| < ρ < 1.



28 CHAPTER 1. UNIVALENT ANALYTIC FUNCTIONS

We have some properties for convolution over analytic functions f, F

f ∗ F = F ∗ f
α(f ∗ F ) = αf ∗ F
f ∗ l = f

zf ∗ zF = z(f ∗ F )

f ∗ 1

α
l(αz) =

1

α
f(αz)

f ∗ F = f ∗ F
f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3
α(f ∗ F ) = αf ∗ F
zf ′(αz) = f ∗ z

(1− αz)2

1

α
f(αz) = f ∗ z

1− αz
zf ′(z) = f ∗ k(z)
z(f ∗ F )′ = zf ′ ∗ F = f ∗ zF ′

f(αz)− f(βz)

α− β
= f ∗ z

(1− αz)(1− βz)

where α ∈ C,
For real-value g function we have

Re (f ∗ g) = Re f ∗ g , Im(f ∗ g) = Imf ∗ g

In case of analytic functions f(z) and F (z), this subject is significant and
has investigated by some people. The classes of starlike, convex and close-to-
convex functions are closed under convolution with convex functions. This
was conjectured by Pólya and Schoenberg [60] and proved by Ruscheweyh
and Shiel-Small [75] in 1973:
(a) If f ∈ K and F ∈ K, then f ∗ F also belongs to K,
(b) If f ∈ K and F ∈ C, then f ∗ F also belongs to C,

(c) If f ∈ K, F ∈ K and G ∈ C, Then f ∗ zG′

f ∗ zF ′ takes all its values in a convex

domain D if
G′

F ′ takes all its values in D.

Futhermore,
(d) If f ∈ C and F ∈ S∗, then f ∗ F also belongs to S∗.
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If
∞∑
n=2

n2|an| ≤ 1 Then f ∈ C and if f ∈ C then |an| ≤ 1

If
∞∑
n=2

n|an| ≤ 1 Then f ∈ S∗ and if f ∈ S∗ then |an| ≤ n

If
∞∑
n=2

n− α

1− α
|an| ≤ 1 Then f ∈ S∗(α) and if f ∈ S∗ then |an| ≤ n

If
∞∑
n=2

n2|an| ≤ 1 Then f ∈ K

Lemma 1.14.1. (Ruscheweyh & Sheil-Small [75]) Let f(z) and F (z) be
analytic in D with f(0) = F (0) = 0. If f be convex and F is starlike, then
for each function p(z), analytic in D and satisfying Re p(z) > 0, we have

Re
(f ∗ pF )(z)
(f ∗ F )(z)

> 0 , z ∈ D

Open Problem 2. Determine whether the class UST is closed under con-
volution with convex functions.

For a given subset V ⊂ A, it’s dual set V∗ is defined by

V∗ =
{
g ∈ A :

f ∗ g(z)
z

̸= 0, ∀f ∈ V , ∀z ∈ D
}

Nezhmetdinov (1997) proved that classes UST and UCV are dual sets for
certain families of functions from A, and showed ([55], Theorem 2, p.43) that
the the dual set of the class UST is the subset of A consisting of functions
h : D → C given by

h(z) =
z
(
1− w+iα

1+iα
z
)

(1− wz)(1− z)2

where α ∈ R, w ∈ C and |w| = 1. He determined the uniform estimate
|an(h)| ≤ dn for the n-th Taylor coefficient of h in the dual set of UST with
a sharp constant d =

√
M ≈ 1.2557, where M ≈ 1.5770 is the maximum

value of a certain trigonometric expression. Using this, he showed that
∞∑
n=2

n|an| ≤
1√
M

=⇒ f ∈ UST

The bound
1√
M

is sharp.
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Lemma 1.14.2. Let G0 =
{
g ∈ A : g(z) =

z

(1− z)2

[
1− iα

1 + iα
z
]
, α ∈ R

}
,

then S∗ = G∗
0 and |an| ≤ n(2n− 1) for all g ∈ G2.

Nezhmetdinov [55] obtained a dual set for classes UST and UCV :

Lemma 1.14.3. Let G1 =
{
g ∈ A : g(z) =

z

(1− z)2

[
1−(t+ iα)

1 + iα
z
][ 1

1− tz

]
, α ∈

R, |t| = 1
}
, then UST = G∗

1 and cn = sup
g∈G1

|an| ≤ dn for all n ≥ 2, with the

sharp constant d =
√
M = 1.2557 . . . where M = S(θ0) = 1.5770 . . . is the

maxmimal value of

S(θ) =
1

2

[
1 +

(sin θ
θ

)2
+

√(
1 +

(sin θ
θ

)2)2 − (sin 2θ
θ

)2]
(1.51)

on 0 ≤ θ ≤ π. Here the extremal point θ0 = 0.9958 . . . is the unique solution
of the equation

θ3(cos θ + cos 3θ)− θ2 sin 3θ + sin3 θ = 0 (1.52)

on the segment 0.8 ≤ θ ≤ 1.3.

Lemma 1.14.4. Let G2 =
{
g ∈ A : g(z) =

z

(1− z)3

[
1− z − 4z

(α + i)2

]
, α ∈

R
}
, then UCV = G∗

2 and |an| ≤ n(2n− 1) for all g ∈ G2.

1.15 Prestarlike Function

Definition 1.15.1. A function f(z) ∈ H(D) is called prestarlike of order α
(with α ≤ 1) if

z

(1− z)2−2α
∗ f(z) ∈ S∗(α)

and for α = 1, Re
f(z)

z
>

1

2
.

The set of all such functions is denoted by Rα. Note that R0 = K and

R 1
2
= S∗(

1

2
).

Let Ω∗ = C − [1,∞) and f(z) ∈ H(Ω∗) we defined

(Dβf)(z) =
z

(1− z)β
∗ f(z)
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for β ≥ 0. (D1f)(z) = f(z), (D2f)(z) = zf ′(z) and for β = n ∈ N we have
Dn+1f = 1

n!
z(zn−1f)(n).

Definition 1.15.2. Let α ≤ 1 and p ∈ P in D with p′(0) > 0, which p(D) is
starlike with respect to 1 and symmetric with respect to the real axis. Then
the class Ru

α(p) consists of all analytic function f(z) ∈ H(Ω∗) satisfying

D3−2αf

D2−2αf
≺ p

Taking g(z) = z +
∞∑
n=2

nmzn for m = 0, 1, 2, 3, · · · , then f ∗ g denotes the

Sǎlǎgean derivative of f that f(z) = z +
∞∑
n=2

anz
n.

Lemma 1.15.1. (Ravichandran et al. [67]) If function p(z) = 1+c1z+c2z
2+

· · · be analytic in D for which Re p(z) > 0, then |c2−ϵc21| ≤ 2max{1, |2ϵ−1|}.
The inequality is sharp for p(z) =

1 + z

1− z
.

Remark 1.15.1. Let

f(z) =
∞∑
n=0

anz
n =

∫ 1

0

dµ(t)

1− tz

where an =

∫ 1

0

tndµ(t), and µ(t) is a probability measure on [0, 1].

Definition 1.15.3. Let f be analytic in a simply connected region of the
z-plane containing the origin. The fractional derivative of f of order λ is
defined by

Dλ
z f(z) :=

1

Γ(1− λ)

d

dz

∫ z

0

f(ζ)

(z − ζ)λ
(0 < λ < 1)

where the multiplicity of (z − ζ)λ is removed by requiring that log(z − ζ) is
real for z − ζ > 0.

Using the above definition and it’s known extensions involving fractional
derivatives and fractional integrals, Owa and Srivastava introduced the op-
erator Ωλ := H(D) → H(D) for λ any positive real number ̸= 2, 3, 4, · · ·
defined by

(Ωλf)(z) = Γ(2− λ)zλDλ
z f(z)

Here is defined the prestarlike Functions of Complex Order [77]
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Definition 1.15.4. Let α ≤ 1 and b ̸= 0 be a complex number. Let p ∈ P
in D with p′(0) > 0, which p(D) is starlike with respect to 1 and symmetric
with respect to the real axis. Then the class Ru

α,b(p) consists of all analytic
function f(z) ∈ H(Ω∗) satisfying

1 +
1

b

(D3−2αf

D2−2αf
− 1
)
≺ p

1.16 m-fold symmetric

A function f(z) analytic in D is said to be m-fold symmetric m = 2, 3, · · · , if
f(e2πi/mz) = e2πi/mf(z). In particular, every odd f(z) is 2-fold symmetric.
Let Sm denote the subclass of S consisting of those f(z) that are m-fold
symmetric. It’s clear that f ∈ Sm is characterized by having a power series
of the form

f(z) = z + am+1z
m+1 + a2m+1z

2m+1 + · · ·

1.17 Qλ(β)

Ding et al. (1995) introduced the following class Qλ(β) of analytic functions
[20]:

Qλ(β) = {f ∈ A : Re
(
(1− λ)

f(z)

z
+ λf ′(z)

)
> β , 0 ≤ β < 1, λ ≥ 0}

(1.53)
We can see Qλ1(β) ⊂ Qλ2(β) for λ1 > λ2 ≥ 0, Thus, for λ ≥ 1, 0 ≤ β < 1
and Qλ(β) ⊂ Q1(β) = {f ∈ A : Re f ′(z) > β, 0 ≤ β < 1 and hence Qλ(β) is
univalent class.

1.18 averaging operators

Let H be the class of analytic functions in D and co(E) denote the convex
hull of a set E in C. Miller and Mocanu [50] introduced the concept of an
averaging operator defined on a set K ⊂ H. The averaging operators is an
operator I : K → H that satisfies I[f ](0) = f(0) and

I[f ](D) ⊂ co
(
f(D)

)
(1.54)
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for all f ∈ K. A necessary and sufficient condition for averaging operator is

Lemma 1.18.1. ( [50], Lemma 2) Let K ⊂ H and let an operator I : K → H
satisfy I[f ](0) = f(0) for all f ∈ K. A necessary and sufficient condition for
I to be an averaging operator on K is that

(f ∈ K, h convex, and f ≺ h) ⇐⇒ I[f ] ≺ h. (1.55)

Also, the authors gave the example

Iγ[f ](z) =
γ

zγ

∫ z

0

f(t)tγ−1dt (1.56)

which is an averaging operator on H where Re γ > 0. They gave [51] a
generalization of (1.56) of the form

Iβ,γ [f ](z) =
[ γ
zγ

∫ z

0

fβ(t)tγ−1dt
] 1

β
(1.57)

where Re γ > 0 and showed that these operators are averaging operators on
certain subsets of H we need to e

1.19 lowner chain

The following lemma concerns subordination (or Loewner) chains.

Definition 1.19.1. ([62], p.157) A function L(z, t), z ∈ D, t ≥ 0 is a
subordination chain if L(0, t) is analytic and univalent in D for all t ≥ 0,
L(z, 0) is continuously differentiable on [0,∞) for all z ∈ D, and L(z, s) ≺
L(z, t) when 0 ≤ s ≤ t.

Lemma 1.19.1. ([62], p.159) The function L(z, t) = a1(t)z + · · · , with
z ∈ D and t ≥ 0, where a1(t) ̸= 0 for all t ≥ 0 and lim

t→∞
|a1(t)| = ∞, is a

subordination chain iff

Re
[z ∂L

∂z
∂L
∂t

]
> 0

for all z ∈ D and t ≥ 0.
this special mapping from D onto a slit domain, plays a crucial role in

both our lemma and the main theorem of this article.



34 CHAPTER 1. UNIVALENT ANALYTIC FUNCTIONS

Let c ∈ C with Re c > 0 and let N = N(c) =
|c|(1 + 2Re c)

1
2 + Imc

Re c
. If

h is the univalent function h(z) =
2Nz

1− z2
and b = h−1(c) then let

Qc(z) = h
( z + b

1 + bz

)
= 2N

(z + b)(1 + bz)

(1 + bz)2 − (z + b)2
(1.58)

z ∈ D. The function Qc is univalent in D, Qc(0) = c, and Qc(D) = h(D) is the
complex plane slit along the half-lines Rew = 0, Imw ≥ N and Rew = 0,
Imw ≤ −N .
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Bi-Univalent functions

Every univalent function f ∈ S has an inverse f−1, which is defined by
f−1(f(z)) = z in D. The Koebe one-quarter theorem 1.0.1 ensures that

the image of D under every f ∈ S contains a disk of radius
1

4
, so we have

f(f−1(w)) = w with |w| < r0(f) for which r0(f) ≥ 1
4
, where

f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (2.1)

Definition 2.0.1. A function f ∈ A is said to be bi-univalent in D if both f
and f−1 are univalent in D. We denote the class of all bi-univalent functions
in D by Σ, where f ∈ S and f−1 given by (2.1).

Σ = {f ∈ S : f−1 ∈ S}. (2.2)

Some examples of functions in the class Σ are ℓ(z) =
z

1− z
, − log(1 − z)

and
1

2
log

1 + z

1− z
and some examples in class S that are not in the class Σ are

k0(z) =
z

(1− z)2
and its rotations, z − 1

2
z2 and

z

1− z2
.

Lewin [44] in 1967 introduced and investigated the bi-univalent function
class Σ and showed that |a2| < 1.51 for all f ∈ Σ. Brannan and Clunie [D.A.
Brannan, J.G. Clunie (Eds.), Aspects of Contemporary ... 1980.] (1980)

conjectured that |a2| <
√
2 and Netanyahu [54] showed that max

f∈Σ
|a2| =

4

3
.

The coefficients bound estimate problem for each of the coefficients an is still
an open problem.

35
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Brannan and Taha [13, 14] introduced certain subclasses of the bi-univalent
function of class Σ, named strongly bi-starlike functions of order α:

S∗
Σ[α] = {f ∈ Σ :

∣∣∣ arg zf ′(z)

f(z)

∣∣∣ < α
π

2
,
∣∣∣ arg zg′(w)

g(w)

∣∣∣ < α
π

2
; 0 < α ≤ 1, z ∈ D}

(2.3)
We have also bi-starlike functions of order α:

S∗
Σ(α) = {f ∈ Σ : Re

(zf ′(z)

f(z)

)
> α , Re

(zg′(w)
g(w)

)
> α ; 0 ≤ α < 1, z ∈ D}

(2.4)
HΣ(β) Srivastava et al. (2010) [83]

Re f ′(z) > β ; f(z) ∈ Σ, z ∈ D (2.5)

Re g′(w) > β ; g(w) = f−1(w), w ∈ D (2.6)

0 ≤ β < 1. For f ∈ HΣ(β):

|a2| ≤

{ √
2(1−β)

3
, 0 ≤ β < 1

3

1− β , 1
3
≤ β < 1

, |a3| ≤
2(1− β)

3
(2.7)

KΣ(β) Brannan and Taha (1986) [13]

Re 1 + z
f ′′(z)

f ′(z)
> β ; f(z) ∈ Σ, z ∈ D (2.8)

Re 1 + w
g′′(w)

g′(w)
> β ; g(w) = f−1(w), w ∈ D (2.9)

0 ≤ β < 1. For f ∈ KΣ(β):

|a2| ≤ 1− β, |a3| ≤
{

1− β , 0 ≤ β < 1
3

(1−β)(4−3β)
3

, 1
3
≤ β < 1

(2.10)

SΣ(α, β) Aziz, Ebadian and Najafzadeh (2015) [9]

Re
(
(1− α)f ′(z) + α(1 + z

f ′′(z)

f ′(z)
)
)
> β ; f(z) ∈ Σ, z ∈ D (2.11)

Re
(
(1− α)g′(w) + α(1 + w

g′′(w)

g′(w)
)
)
> β ; g(w) = f−1(w), w ∈ D(2.12)
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0 ≤ α < 2, 0 ≤ β < 1. For f ∈ SΣ(α, β):

|a2| ≤ min
{
1− β,

√
2(1− β)

3− α

}
, |a3| ≤ min

{2(1− β)

3(1 + α)
+ (1− β)2,

2(1− β)

3− α

}
(2.13)

α = 0: SΣ(0, β) = HΣ(β) (Srivastava et al. [83])
α = 1: SΣ(0, β) = KΣ(β) (Brannan and Taha [13])

N µ
Σ(α, λ) Branan, Taha (20??) [?]

∣∣∣ arg ((1− λ)
(f(z)
z

)µ
+ λf ′(z)

(f(z)
z

)µ−1
)∣∣∣ < απ

2
; f(z) ∈ Σ, z ∈ D (2.14)∣∣∣ arg ((1− λ)

(g(w)
w

)µ
+ λg′(w)

(g(w)
w

)µ−1
)∣∣∣ < απ

2
; g(w) = f−1(w), w ∈ D(2.15)

0 < α ≤ 1, µ ≥ 0 and λ ≥ 1. For f ∈ N µ
Σ(α, λ):

|a2| ≤
2α√

(µ+ λ)2 + α(µ+ 2λ− λ2)
, |a3| ≤

4α2

(λ+ µ)2
+

2α

2λ+ µ
(2.16)

µ = 1: N 1
Σ(α, λ) = BΣ(α, λ) (Frasin and Aouf 2011. [?])

Re
{
(1− λ)

f(z)

z
+ λf ′(z)

}
> α , Re

{
(1− λ)

g(w)

w
+ λg′(w)

}
> α

with 0 ≤ α < 1. So

|a2| ≤
2α√

(λ+ 1)2 + α(1 + 2λ− λ2)
, |a3| ≤

4α2

(λ+ 1)2
+

2α

2λ+ 1
(2.17)

λ = 1: N µ
Σ(α, 1) = PΣ(α, µ) (Prima and Keresi 2013. [?])

is Bi-Bazelivić functions, satisfy condition f ∈ PΣ(α, µ):

Re
z1−µf ′(z)

f(z)1−µ
> α , Re

w1−µg′(w)

g(w)1−µ
> α

with 0 ≤ α < 1. So

|a2| ≤
2α√

(µ+ 1)2 + α(µ+ 1)
, |a3| ≤

4α2

(µ+ 1)2
+

2α

µ+ 2
(2.18)
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λ = µ = 1: N 1
Σ(α, 1) = HΣ(α) (Srivastava et al. 2010. [83])

|a2| ≤ α

√
2

α + 2
, |a3| ≤

1

3
α(3α + 2) (2.19)

λ = 1 and µ = 0: N 0
Σ(α, 1) = S∗

Σ(α) (Bi-Stralike function of order α)

|a2| ≤
2α√
α + 1

, |a3| ≤ α(4α + 1) (2.20)

Bulut (2014) shows with Faber coefficients for n ≥ 4:

|an| ≤
2(1− α)

µ+ (n− 1)λ

and

|a3 −
µ+ 3

2
a22| =

2(1− α)

µ+ 2λ

Bulut also obtain beter bounds for a2 and a3 for function in these classes
(2014). Zhu (2007) determine conditions on α, λ, µ and M which∣∣∣(1− λ)

(f(z)
z

)µ
+ λf ′(z)

(f(z)
z

)µ−1 − 1
∣∣∣ < M

KΣ(α, β) Sim and Kwon (2013) [81]

α < Re
(
1 + z

f ′′(z)

f ′(z)

)
< β ; f(z) ∈ Σ, z ∈ D (2.21)

α < Re
(
1 + z

g′′(z)

g′(z)

)
< β ; g(w) = f−1(w), w ∈ D (2.22)

For real numbers α and β with 0 ≤ α < 1 < β, For f ∈ KΣ(α, β):

|a2| ≤
|B1|

√
|B1|√

2|B2
1 − 2B1 + 2B2|

, |a3| ≤
1

2
(|B1|+ |B2 −B1|) (2.23)

where |B1| = i
β − α

π

(
1− e2πi

1−α
β−α

)
, |B2| = i

β − α

2π

(
1− e4πi

1−α
β−α

)
and

|b2| ≤ β − α

π
sin

(1− α)π

β − α
, (2.24)

|b3| ≤ β − α

3π
sin

(1− α)π

β − α
max

{
1,
∣∣∣1
2
− 2i(β − α)

π
+ (

1

2
+

2i(β − α)

π
)e2πi

1−α
β−α

∣∣∣}(2.25)
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Univalent harmonic functions

Harmonic functions have been studied by differential geometers such as Cho-
quet, Kneser, Lewy, and Rado in past century. Then harmonic complex
functions investigated by geometric function theorists Clunie and Sheil-Small
[18]. They developed the basic theory of the family of harmonic functions
which are univalent in D. Later studies showed further properties in this fam-
ily of complex-valued functions. In following we will note most of properties
harmonic univalent maps.

3.1 Real-Value Harmonic Univalent Maps

In this context, a function u(x, y) : R2 → R is called real harmonic if
uxx+uyy = 0, that is Laplace equation. The Laplace equation arises in many
applications, for example in physics in the following scenarios. In hydrody-
namics, the ”velocity potential” of the fluid flow satisfies the Laplace equa-
tion, while in electrostatics, the electrostatic potential satisfies the Laplace
equation. The Laplace equation also has an important link with stochastic
processes.

A harmonic function is C∞, they are infinitely many times differentiable,
and every harmonic function in a simply connected domain is the real part
of some holomorphic function defined there. Furthermore

Lemma 3.1.1. [30] Harmonic functions have the Mean Value Property, and
hence they satisfy the Maximum Modulus Principle. Real-valued harmonic
functions also satisfy the Maximum and Minimum Principles.

39
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Lemma 3.1.2. (The Poisson integral formula [30]). Let f be a harmonic
function on the domain |z| < ρ for some ρ > 0. Then, for each 0 < r < ρ,

f(z) =
1

2π

∫ 2π

0

r2 − |z|2

|reiθ − z|2
f(reiθ)dθ, for |z| < r. (3.1)

3.2 Complex-Value Harmonic Univalent Maps

In folloing we will discuss about planar harmonic mappings. These functions
can be thought of as a generalization of analytic maps.

We let H denote the family of continuous complex-valued functions which
are harmonic in the open unit disk D.

Let f : D ⊂ C → C. The function f(x, y) = u(x, y) + iv(x, y) is complex-
valued harmonic function if f is continuous and u and v are real harmonic in
D. Clearly, u and v aren’t harmonic conjugates otherwise f will be a analyic
function and isn’t our cast. If D be a simply-connected, so we have a useful
representation for f [18]:

Lemma 3.2.1. Let D be a simply-connected domain and f = u + iv is
harmonic in D, then f has a canonical representation f = h + g, where h
and g are analytic in D. We call h the analytic part and g, the co-analytic
part of f .

In D, g and h can be expanded in Taylor series as h(z) =
∞∑
n=1

anz
n,

g(z) =
∞∑
n=1

bnz
n so we may represent f by a power series of the form

f(z) = h(z) + g(z) =
∞∑
n=0

anz
n +

∞∑
n=1

bnzn (3.2)

The Jacobian of a function f = u+ iv is Jf (z) =

∣∣∣∣ ux uy
vx vy

∣∣∣∣ = uxvy −uyvx =
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|fz|2 − |fz|2 = |h′(z)|2 − |g′(z)|2, since

fz =
1

2

(∂f
∂x

− i
∂f

∂y

)
=

1

2
(ux + ivx − iuy + vy) =

1

2

(
ux + vy + i(vx − uy)

)
fz =

1

2

(∂f
∂x

+ i
∂f

∂y

)
=

1

2
(ux + ivx + iuy − vy) =

1

2

(
ux − vy + i(vx + uy)

)
|fz|2 − |fz|2 =

1

4

(
(ux + vy)

2 + (vx − uy)
2 − (ux − vy)

2 − (vx + uy)
2
)
= uxvy − uyvx

If f is analytic, its Jacobian takes the form Jf (z) = u2x + v2x = |f ′(z)|2. A
harmonic map f = h + g is s sense-preserving at z = a if Jf (a) > 0, that is

|h′(a)|2 − |g′(a)|2 > 0 or |h′(a)| > |g′(a)|. Let ω(z) = g′(z)

h′(z)
, so f = h+ g is a

sense-preserving at z = a if |ω(a)| < 1 and it is sense-reserving if |ω(a)| > 1.
The function ω(z) is an analytic function, called (second complex) dilatation
of f . Note that ω(z) = 0 if and only if f is analytic. We see that f = h + g
is equivalent to f = Re (h+ g) + iIm(h− g).

Lemma 3.2.2. [23] All critical points of a nonconstant harmonic function
are isolated.

Theorem 3.2.1. (Lewy’s Theorem [23]) If f is a complex-valued harmonic
function that is locally univalent in a domain D ⊂ C, then its Jacobian
Jf (z) ̸= 0 for all z ∈ D.

So, in the Lewy’s theorem view, for a complex-valued harmonic function
to be locally univalent and sense-preserving in a domain, Jf > 0 in domain.
For Jf < 0, f is sense-preserving.

The Poisson integral formula also is true for complex-value harmonic
Maps [23].

3.3 SH Class

Let SH denote the class of complex-valued univalent harmonic functions of
form (3.2) that are sense-preserving on D, and normalized by a0 = 0, a1 = 1.
So we can write every f ∈ SH in the form of

f(z) = h(z) + g(z) = z +
∞∑
n=2

anz
n +

∞∑
n=1

bnz
n (3.3)
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3.4 S0
H Class

Furthermore if we restrict f ∈ SH to have b1 = 0, this subclass is showen by
S0
H . Clearly S ⊂ S0

H ⊂ SH . S0
H is a compact normal family, but SH not so.

fz(0) = g′(0) = b1 = 0
This class is preserved under conjugation, rotation, dilation, disc auto-

morphism and range transformation!
Like as Bieberbach conjecture in the class S, we have harmonic Bieberbach

conjecture: Let f(z) ∈ S0
H be a harmonic function of form (3.3) then

|an| ≤
1

6
(n+ 1)(2n+ 1) (3.4)

|bn| ≤
1

6
(n− 1)(2n− 1) (3.5)∣∣|an| − |bn|
∣∣ ≤ 1 (3.6)

However this Conjecture is an open problem, the best known bound for all
functions f(z) ∈ S0

H is |a2| < 49 and also

Lemma 3.4.1. [23] For all functions f(z) ∈ S0
H , the sharp inequality |b2| ≤ 1

2

holds.

3.5 Shearing Technique

Shear construction devised by Clunie and Sheil-Small [18] in 1984 for more
study in planar harmonc functions. This technique provides a procedure for
constructing univalent harmonic maps f = h+ g ∈ SH . The shear technique
is essential to the work on harmonic mapps, because it allows us to study
harmonic functions by examining their related analytic functions.

A domain D ⊂ C is said to be convex in the horizontal direction (CHD)
if its intersection with each horizontal line is connected(or empty), so

Lemma 3.5.1. [23] Let f = h + g be harmonic and locally univalent in D.
Then f is univalent and its range is CHD if and only if h − g be univalent
and its range be CHD.

For use of shearing technique we use above lemma and with univalent
f = h + g and CHD range, make a univalent F = h − g and CHD range to

have dilatation ω(z) =
g′(z)

h′(z)
. In this process the assumption |ω(z)| < 1 is

necessary to be f sense-preserving (Theorem 3.2.1).
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Figure 3.1: The image of D under F = z − 1
6
z3 map.

Example 3.5.1. Let F = z−1

6
z3 that is univalent with CHD range (Fig.3.1).

We want to construct univalent harmonic map f = h + g with dilatation

ω(z) =
1√
2
z. Then f will be univalent harmonic maps and sense-preserving

|ω(z)| = | 1√
2
z| < 1. Write h− g = z − 1

6
z3 and

g′(z)

h′(z)
=

1√
2
z so,

{
h′ − g′ = 1− 1

2
z2

g′ = 1√
2
zh′

{
h′(z) = 1 + 1√

2
z

g′(z) = 1√
2
z + 1

2
z2

{
h(z) = z + 1

2
√
2
z2

g(z) = 1
2
√
2
z2 + 1

6
z3

note that h(0) = g(0) = 0 and then f = h+ g = z +
1

2
√
2
z2 +

1

2
√
2
z2 +

1

6
z3

is desired harmonic map that is univalent and CHD (Fig.3.2).

Example 3.5.2. Let F =
z

1− z
that is convex univalent (Fig.1.2). We

construct univalent harmonic map f = h + g with dilatation ω(z) = z2.

From |ω(z)| = |z2| < 1 ensure local univalence of f . Get h− g =
z

1− z
and

g′(z)

h′(z)
= z2 and then,

{
h′ − g′ = 1

(1−z)2

g′ = z2h′

{
h′(z) = 1

(1−z2)(1−z)2

g′(z) = z2

(1−z2)(1−z)2

{
h(z) = z−2

4(z−1)2
+ 1

8
log z+1

z−1
+ iπ

8
− 1

2

g(z) = 3z−2
4(z−1)2

+ 1
8
log z+1

z−1
+ iπ

8
+ 1

2

with integration constant h(0) = g(0) = 0 and then f = h+g = −1

2

z

(1− z)2
+
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Figure 3.2: The image of D under f = z + 1
2
√
2
z2 + 1

2
√
2
z2 + 1

6
z3 map.

2Re
( 3z − 2

4(z − 1)2
+
1

8
log

z + 1

z − 1

)
is desired CHD univalent harmonic map (Fig.3.3).

Figure 3.3: The image of D under harmonic map f in example 3.5.2.

We have some examples in the following table for some analytic CHD
maps F with given dilatation ω and obtained corresponding harmonic func-
tions f . In every case have drawn the graphs of F and f .

Technique F f

F = z − 1
6
z3

ω = 1√
2
z

h = z + 1
2
√
2
z2

g = 1
2
√
2
z2 + 1

6
z3

f = z + 1
2
√
2
z2

+ 1
2
√
2
z2 + 1

6
z3
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

F = z − 1
2
z2

ω = z

h = z

g = 1
2
z2

f = z + 1
2
z2

F = z − 1
2
z2

ω = z2

h = log(1 + z)

g = −z + 1
2
z2

+ log(1 + z)

f = 2Re log(1 + z)

− z + 1
2
z2

F = z − 1
2
z2

ω = z3

h = 2√
3
tan−1(2z+1√

3
)

− π
3
√
3

g = −z + 1
2
z2 − π

3
√
3

+ 2√
3
tan−1(2z+1√

3
)

f = h+ g

F = z − 1
2
z2

ω = z4

h = 1
4
log (1+z)2

1+z2
+ tan−1 z

2

g = −z + 1
2
z2

+1
4
log (1+z)2

1+z2
+ tan−1 z

2

f = h+ g
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

F = z − 1
2
z2

ω = 1
2
z − 1

4
z2

h = log 4
z2−2z+4

g = −1
2
z + 1

4
z2

+ log 4
z2−2z+4

f = h+ g

k0 =
z

(1−z)2

ω = z

h =
z− 1

2
z2+ 1

6
z3

(1−z)3

g =
1
2
z2+ 1

6
z3

(1−z)3

f = Re
z+ 1

3
z3

(1−z)3

+ iIm z
(1−z)2

In the last row, we have got the Koebe function k0(z) =
z

(1−z)2
and make

univalent harmonic map f(z) = Re
z+ 1

3
z3

(1−z)3
+ iIm z

(1−z)2
with dilatation ω(z) =

z. f is known as harmonic Koebe function, that is

k0H(z) = Re
z + 1

3
z3

(1− z)3
+ iIm

z

(1− z)2
=
z − 1

2
z2 + 1

6
z3

(1− z)3
+

1
2
z2 + 1

6
z3

(1− z)3
∈ S0

H(3.7)

The harmonic Koebe function maps D onto the plane minus the negative real

half-line from −1

6
to ∞ as has shown in it’s graph [23]. the coefficients of h

and g are found to be

|an| ≤
1

6
(n+ 1)(2n+ 1) , |bn| ≤

1

6
(n− 1)(2n− 1) (3.8)

So, this conjecture that for all functions f ∈ S0
H and for all indices n, the

coefficients of h and g must to satisfy in (3.8) is an open problem. It suggests

that perhaps each function in S0
H will cover the disk |w| < 1

6
, but,

Lemma 3.5.2. [18] The range of every f ∈ S0
H contains the disk |w| < 1

16
.

Open Problem 4. Construct examples of harmonic univalent functions
whose dilatation is a singular inner function and determine properties of
these functions.
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3.6 Starlikeness

A harmonic function f(z) is said to be starlike if it’s range be starlike with
respect to the origin. This means that every point of the range can be
connected to the origin by a radial line that lies entirely in the region. In the
other words, arg{f(eiθ)} will be a nondecreasing function of θ, or that

∂

∂θ
arg{f(eiθ)} ≥ 0

The class of all starlike functions in SH is shown by S∗
H . The subclass of all

starlike functions in S0
H denote by S0∗

H .

Lemma 3.6.1. (Silverman [79]) If
∞∑
n=2

n|an|+
∞∑
n=1

n|bn| ≤ 1, then f ∈ S∗
H .

The subclass S0
H of SH includes all functions f ∈ SH with fz(0) = 1, so

S ⊂ S0
H ⊂ SH . Clunie and Sheil-Small also considered starlike functions in

SH , denote by S∗
H . The subclass of all starlike functions in S0

H denote by
S0∗
H . Starlikeness isn’t a hereditary property for harmonic mappings, so the

image of every subdisk |z| < r < 1 is not necessarily starlike with respect to
the origin [23, 3]. Thus we need a property to explain starlikeness of a map
in a hereditary form. We have folowing definition.

Definition 3.6.1. A harmonic mapping f with f(0) = 0 is said to be fully-
starlike if it maps every circle |z| = r < 1 in a one-to-one manner onto a
curve that bounds a domain starlike with respect to the origin.

For f ∈ SH , the family of fully-starlike functions denotes by FS∗
H . In 1980

Mocanu gave a relation between fully-starlikeness and a differential operator
of a non-analytic function [52]. Let

Df = zfz − zfz (3.9)

be the differential operator and

D2f = D(Df) = zfz + zfz + zzfzz + zzfzz (3.10)

Lemma 3.6.2. Let f ∈ C1(D) is a complex-valued function such that f(0) =

0, f(z) ̸= 0 for all z ∈ D−{0}, and Jf (z) > 0 in D and Re
Df(z)

f(z)
> 0 then

f is univalent and fully-starlike in D.
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A harmonic mapping f with f(0) = 0 is said to be fully starlike if it maps
every circle |z| = r < 1 in a one-to-one manner onto a curve that bounds a
domain starlike with respect to the origin. However, a fully starlike mapping
need not be univalent [17].

Let Df = zfz − zfz denote the differential operator and

D2f = D(Df) = zfz + zfz + zzfzz + zzfzz

For sense-preserving complex-valued function f(z), Df ̸= 0. If f(z) ≠ 0
for all z ∈ D − {0}, and Jf (z) > 0 in D and f satisfies condition such as

Re
Df(z)

f(z)
> 0 or Re

D2f(z)

Df(z)
> 0 for all z ∈ D − {0}, then f maps every

circle 0 < |z| = r < 1 onto a simple closed curve [52], from

∂

∂θ
arg{f(eiθ)} = Re

Df(z)

f(z)

we have

Lemma 3.6.3. (Mocanu [52]) Let f ∈ C1(D) is a complex-valued function
such that f(0) = 0, f(z) ̸= 0 for all z ∈ D − {0}, and Jf (z) > 0 in D and

Re
Df(z)

f(z)
> 0 then f is univalent and fully starlike in D.

We denote by S0∗
H (α) the subclass of S0

H consisting of starlike functions
of order α (0 ≤ α < 1). Jahangiri [38] proved that f ∈ S0∗

H (α) if

∞∑
n=2

n− α

1− α
|an|+

∞∑
n=2

n+ α

1− α
|bn| ≤ 1 (3.11)

3.7 Convexity

A harmonic function f(z) ∈ SH is said to be convex if it’s range is a convex set
on C. In geometric view of the range of f(D), this means that arg{ ∂

∂θ
f(eiθ)}

be a nondecreasing function of θ, or that

∂

∂θ
arg
{ ∂

∂θ
f(eiθ)

}
≥ 0

The hereditary property for conformal maps does not generalize to harmonic
mappings. If f is a univalent harmonic map of D onto a convex domain, then
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the image of the disk |z| < r is convex for each radius r ≤
√
2 − 1, but not

necessarily for any radius in the interval
√
2−1 < r < 1. In fact, the function

f(z) = Re
z

1− z
+ iIm

z

(1− z)2
(3.12)

=
z − 1

2
z2

(1− z)2
+

−1
2
z2

(1− z)2
∈ KH

is a harmonic mapping of the disk onto the half-plane Rew > −1
2
, but

the image of the disk |z| ≤ r fails to be convex for every r in the interval√
2 − 1 < r < 1 (Fig.3.4). The class of all convex maps in SH is shown by

Figure 3.4: The image of D under harmonic map (3.12).

KH and so on, the subclass K0
H for S0

H .

Lemma 3.7.1. (Clunie & Sheil-Small [18]) For f given by (3.2), If f ∈ KH ,
then for n ∈ N:

|An| ≤
n− 1

2
|B1|+

n+ 1

2
, |Bn| ≤

n− 1

2
+
n+ 1

2
|B1|

for n ≥ 2: |An| < n, |Bn| < n.

Lemma 3.7.2. (Silverman [79]) If
∞∑
n=2

n2|an|+
∞∑
n=1

n2|bn| ≤ 1, then f ∈ KH .

A harmonic function f is univalent and convex if and only if for each
α ∈ R, the analytic function eiαh − eiαg is univalent and convex in the
horizontal direction.
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A harmonic mapping of the unit disk will be called fully convex if it
maps every circle |z| = r < 1 in a one-to-one manner onto a convex curve. In
particular, f(z) ̸= 0 for 0 < |z| < 1, according to the Rado-Kneser-Choquet
theorem, a fully convex harmonic mapping is necessarily univalent in D [17].
If f(z) ̸= 0 for all z ∈ D− {0}, and Jf (z) > 0 in D, we have [52]

∂

∂θ
arg
{ ∂

∂θ
f(eiθ)

}
= Re

D2f(z)

Df(z)

so,

Lemma 3.7.3. (Mocanu [52]) Let f ∈ C2(D) is a complex-valued function
such that f(0) = 0, f(z) ̸= 0 for all z ∈ D − {0}, and Jf (z) > 0 in D and

Re
D2f(z)

Df(z)
> 0 then then f is univalent and fully convex in D.

A univalent harmonic function f in D is said to be convex in the direction
of α if f(D) is convex in the direction of α. We say that f is convex in one
direction if there exists an α such that f is convex in the direction of α.

We denote by K0
H(α) the subclass of S0

H consisting of convex functions of
order α (0 ≤ α < 1).

Lemma 3.7.4. (Jahangiri [38]) f ∈ K0
H(α) if

∞∑
n=2

n(n− α)

1− α
|an|+

∞∑
n=2

n(n+ α)

1− α
|bn| ≤ 1 (3.13)

Lemma 3.7.5. (Jahangiri [38])
∞∑
n=2

n(n− α)

1− α
|an| +

∞∑
n=2

n(n+ α)

1− α
|bn| ≤ 1

then f ∈ K0
H(α).

3.8 Close-to-Convex

A harmonic function f(z) ∈ SH is said to be close-to-convex if its range f(D)
is a close-to-convex domain.

The class of all close-to-convex harmonic functions in SH is shown by CH .
The subclass of all close-to-convex functions in S0

H denote by C0
H .

Lemma 3.8.1. [18] Let f = h+ g be locally univalent in D and suppose that
h + ϵg is convex for some |ϵ| ≤ 1. Then f is univalent and close-to-convex
in D.
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3.9 Convolution

The convolution of two harmonic functions f(z) and F (z) with canonical
representations

f(z) = h(z) + g(z) = z +
∞∑
n=2

anz
n +

∞∑
n=1

bnz
n (3.14)

F (z) = H(z) +G(z) = z +
∞∑
n=2

Anz
n +

∞∑
n=1

Bnz
n (3.15)

defined as

(f ∗ F )(z) = (h ∗H)(z) + g ∗G(z) = z +
∞∑
n=2

anAnz
n +

∞∑
n=1

bnBnz
n (3.16)

Unlike to the case of analytic functions, the convolution of two harmonic
functions f(z) and F (z), need not preserves the properties of this class. Let

f(z) = h(z) + g(z) =
z

1− z
with dilatation ω(z) = −z, so f ∈ K0

H and

F (z) = H(z) + G(z) =
z

1− z
with dilatation ω(z) = −zn, for n ∈ N, so

F ∈ K0
H also, then (f ∗ F )(z) isn’t locally univalent in D, for n ≥ 3 [22].

Lemma 3.9.1. (Clunie and Shiel-Small [18]) If ϕ ∈ K and F ∈ KH then,

(ϕ+ ϵϕ) ∗ F ∈ CH

for |ϵ| ≤ 1.
Ahuja et al. [2] showed that the required convexity condition for ϕ can-

not be replaced by starlikeness. For example consider the starlike analytic

function ϕ(z) = z +
1

n
zn in D and ϵ = 0. Let

F (z) = h+ g =
z − 1

2
z2

(1− z)2
+

−1
2
z2

(1− z)2
∈ KH

Then the convolution function

(ϕ+ 0ϕ) ∗ F = z +
n+ 1

2n
zn , n ≥ 2

which is not even univalent in D.



52 CHAPTER 3. UNIVALENT HARMONIC FUNCTIONS

Lemma 3.9.2. (Ahuja et al. [2]) Let h and g be analytic in D so that
|g′(0)| < |h′(0)| and h+ ϵg is close-to-convex in D for each |ϵ| = 1. Then

h+ g ∈ CH

If ϕ is convex analytic in D, then

(ϕ+ σϕ) ∗ (h+ g) ∈ CH , |σ| = 1

Clunie and Shiel-Small posed the question for what harmonic functions
ϕ is ϕ ∗ f ∈ KH , where f ∈ KH? This question was partially answered by
Ruscheweyh and Salinas [74]. They proved that if ϕ is analytic in D, then
for all F ∈ KH , ϕ ∗ F = ϕ ∗ReF + ϕ ∗ ImF ∈ KH iff for each real number
γ, the function all ϕ+ iγzϕ′ is convex in the direction of imaginary axis.

Lemma 3.9.3. (Ahuja et al. [2]) Let h and ϕ be convex analytic in D, and
g is analytic there with |g′(z)| < |h′(z)| in D. Then for each |ϵ| ≤ 1,

(ϕ+ ϵϕ) ∗ (h+ g) ∈ CH

Following theorem gives necessary and sufficient convolution conditions
for starlikeness of harmonic functions.

Theorem 3.9.1. (Ahuja et al. [2]) Let f = h+ g ∈ SH , then f ∈ S∗
H iff

h(z) ∗
z + 1

2
(ζ − 1)z2

(1− z)2
− g(z) ∗

ζz − 1
2
(ζ − 1)z2

(1− z)2
̸= 0 ; |ζ| = 1, 0 < |z| < 1

Corollary 3.9.2. (Ahuja et al. [2]) Let f = h + g ∈ SH , if
∑∞

n=2 n|an| +∑∞
n=1 n|bn| ≤ 1 then f ∈ S∗

H .
Next theorem gives necessary and sufficient convolution conditions for

convexness for harmonic functions.

Theorem 3.9.3. (Ahuja et al. [2]) Let f = h+ g ∈ SH , then f ∈ KH iff

h(z) ∗ z + ζz2

(1− z)3
+ g(z) ∗ ζz + z2

(1− z)3
̸= 0 ; |ζ| = 1, 0 < |z| < 1
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Corollary 3.9.4. (Ahuja et al. [2]) Let f = h + g ∈ SH , if
∑∞

n=2 n
2|an| +∑∞

n=1 n
2|bn| ≤ 1 then f ∈ KH .

Kumar et al. [42] have given some result based on coefficients inequalities
for convex harmonic 3.7.1 that makes benefit conclusions about convolution:

Lemma 3.9.4. [42] For three representation of f , F and f ∗ F given by
3.14-3.16 we have

• If
∞∑
n=2

n3|an|+
∞∑
n=2

n3|bn| ≤ 1 and F ∈ K0
H , then f ∗ F ∈ K0

H .

• [42] If
∞∑
n=2

n2|an|+
∞∑
n=2

n2|bn| ≤ 1 and F ∈ K0
H , then f ∗ F ∈ S∗0

H .

• [42] If
∞∑
n=2

n3|an|+
∞∑
n=2

n3|bn| ≤ 1− |b1| and F ∈ KH , then f ∗F ∈ KH .

• [42] If
∞∑
n=2

n2|an|+
∞∑
n=2

n2|bn| ≤ 1− |b1| and F ∈ KH , then f ∗F ∈ S∗
H .

• [42] If
∞∑
n=2

n(n− α)

1− α
|an| +

∞∑
n=2

n(n+ α)

1− α
|bn| ≤ 1 and F ∈ K0

H , then

f ∗ F ∈ S∗0
H (α).

• [42] If
∞∑
n=2

n2(n− α)

1− α
|an| +

∞∑
n=2

n2(n+ α)

1− α
|bn| ≤ 1 and F ∈ K0

H , then

f ∗ F ∈ K0
H .

• [42] Let
∞∑
n=2

n3|an| ≤ 1 and F ∈ KH , if f ∗ F is locally univalent, then

f ∗ F ∈ CH .

If f = h+ g ∈ S0
H maps D onto the right half-plane {w : Rew > 1

2
}, then it

must satisfy in h+ g =
z

1− z
.

The collection of functions f = h+g that map D onto the right half-plane

R = {w : Re w > −1

2
}, have the form

h(z) + g(z) =
z

1− z
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that z
1−z

is the extremal function for class K, and those that map D onto the

vertical strip, R = {w :
α− π

2 sinα
< Re w <

α

2 sinα
}, have the form

h(z) + g(z) =
1

2i sinα
log

1 + zeiα

1 + ze−iα

Lemma 3.9.5. (Dorff [21]) Let f1 = h1+ g1 ∈ K0
H with h1+ g1 =

z

1− z
and

f2 = h2 + g2 ∈ K0
H with h2 + g2 =

z

1− z
. If f1 ∗ f2 be locally univalent and

sense-preserving, then f1 ∗ f2 ∈ S0
H and is convex in the direction of the real

axis.

3.10 TH class

Let TH(α) denote the subclass of SH consisting of harmonic functions f =
h+g whose nonzero coefficients in expansion series of h, from the second on,
are negative. That is,

h(z) = z −
∞∑
n=2

|an|zn , g(z) =
∞∑
n=1

|bn|zn

and satisfy in following condotion also,

∂

∂θ
arg{f(reiθ)} ≥ α

where |z| = r < 1 and 0 ≤ α < 1. This class introduced by Jahangiri [38] in
1999.

Ezhilarasi R.and Sudharsan [26] investigated the class S∗
H(ϕ, ψ, λ, γ, k) of

harmonic function in SH class that satisfying the condition

Re
( (1 + keiα)

(
z(h ∗ ϕ)′ − z(g ∗ ψ)′

)
z′
(
(1− λ)z + λ((h ∗ ϕ) + (g ∗ ψ)

) − keiα
)
≥ γ

for all real α, and ϕ(z) = z +
∞∑
n=2

λnz
n, ψ(z) = z +

∞∑
n=2

µnz
n are analytic

with condition λn ≥ 0, µn ≥ 0, 0 ≤ λ ≤ 1, z′ =
∂

∂θ
(z = reiθ, 0 ≤ r < 1,

0 ≤ θ < 2π, 0 ≤ γ < 1. Also, let S∗
H(ϕ, ψ, λ, γ, k) denote the subclass of

S∗
H(ϕ, ψ, λ, γ, k) consisting of functions f = h+ g ∈ TH .
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Remark 3.10.1. For α = 0 , S∗
H(

z

1− z
,

z

1− z
, 1, γ, 1) = TH(

1 + γ

2
).

Lemma 3.10.1. [26] Let the function f = h+g be so that h and g are given
by (3.2), and let

∞∑
n=2

(n(1 + k)− λ(k + γ)

1− γ

)
λn|an|+

∞∑
n=1

(n(1 + k) + λ(k + γ)

1− γ

)
µn|bn| ≤ 1

where k ≥ 0, λn ≥ 0, µn ≥ 0, 0 ≤ λ ≤ 1, 0 ≤ γ ≤ 1, α is real number and if

n(1− γ) ≤
(
n(1 + k)− λ(k + γ)

)
λn ≤

(
n(1 + k) + λ(k + γ)

)
µn

Then f is sense preserving, harmonic univalent mapping in D and for λ =
1− γ

1 + γ
, f ∈ S∗

H(ϕ, ψ, λ, γ, k).
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[60] Pólya G. and Schoenberg I. J., Remarks on de la Vallée Poussin means
and convex conformal maps of the circle, Pacific J. Math. 8 (2), 295-334
(1958).

[61] Pommerenke Ch., On starlike and close-to-convex functions, Proc. Lon-
don Math. Soc. 3-13 (1), 290-304 (1963).

[62] Pommerenke Ch., Univalent Functions, Vandenhoeck and Rupercht,
Göttingen, (1975).

[63] Ponnusamy S. and Kaliraj A. S., Univalent harmonic mappings convex
in one direction, Anal. & Math. Phys. 4 (3), (2014).

[64] Ponnusamy S. and Rønning F., Duality for Hadamard products applied
to certain integral transforms, Complex Variables: Theory and Appl.,
32 (3) (1997), 263-287.

[65] Ponnusamy S. and Rønning F., Starlikeness properties for convolutions
involving hypergeometric series, Ann. Univ. Mariae Curie-Skodowska, L
II.1, 16 (1998), 141-155.

[66] Ponnusamy S., Sairam Kaliraj A. and Starkov V. V., Absolutely convex,
uniformly starlike and uniformly convex harmonic mappings, Complex
Variables and Elliptic Equations, Vol. 61, Issue 10, 2016, Pages 1418-
1433.

[67] Ravichandran V ., Polatoglu Y., Bolcal M. and Sen A., Certain sub-
classes of starlike and convex functions of complex order, Hacet. J. Math.
Stat. 34, 9-15 (2005).

[68] Robertson M. S., On the theory of univalent functions, Ann. of Math.
37, 374408 (1936).

[69] Rønning F., On uniform starlikeness and related properties of univalent
functions, Complex Variables Theory Appl., 24 (3-4), 233-239 (1994).

[70] Rønning F., A survey on uniformly convex and uniformly starlike func-
tions. Ann. Univ. Mariae Curie-Sklodowska Sect. A, 47 (13), 123-134
(1993).



BIBLIOGRAPHY 63

[71] Rønning F., Uniformly Convex Functions and a Corresponding Class of
Starlike Functions, Proc. Amer. Math. Soc. 118 (1), 189-196 (1993).

[72] Rosy T., Stephen B. A., Subramanian K. G. and Jahangiri J. M. (2001),
”Goodman-Rønning-type harmonic univalent functions”, Kyungpook
Math. J., 41 (1), 45-54.

[73] Rosy T., Stephen B. A., Subramanian K. G. and Jahangiri J. M. (2002),
”Goodman-type harmonic convex functions”, J. Natur. Geom., 21 (1-
2), 39-50.

[74] Ruscheweyh St. and Salinas L., On the preservation of direction-
convexity and the Goodman-Saff conjecture, Ann. Acad. Sci. Fenn., Ser.
A. I. Math., 14, 63-73 (1989).

[75] Ruscheweyh St. and Sheil-Small T., Hadamard products of schlicht func-
tions and the Polya-Schoenberg conjecture, Comment. Math. Helv., 48
(1), 119-135 (1973).

[76] Sakaguchi K., On a certain univalent mapping, J. Math. Soc. Japan, 11
(1), (1959), 72-75.

[77] Shanmugam T. N. and Lourthu M. J., Universally Prestarlike Functions
of Complex Order, (2013).

[78] Sheil-Small T., Constants for planar harmonic mappings, J. London
Math. Soc. 42 (1990), 237-248.

[79] Silverman H., Harmonic Univalent Functions with Negative Coefficients,
J. Math. Ana. Appl. 220 (1) (1998).

[80] Silverman H., Univalent functions with Negative Coefficients, Proc.
Amer. Math. Soc., 51, 109-116 (1975).

[81] Sim Y. J. and Kwon Oh S., On Certain Classes of Convex Functions,
International Journal of Mathematics and Mathematical Sciences 2013,
Article ID 294378 (2013).
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